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INTRODUCTION

Atlas is the registered trademark for a group of fluoroelastomers manufactured in Japan*
and marketed in the United States.t The chemical structure of Atlas is shown in Table 1.
Only Atlas, Fluorel, and Viton, which are fluorocarbon clastomers, will be considered in this
report. This table includes elastomers which are sold in bulk and does not include Kalrez
elastomer parts, which are marketed by Du Pont. While Viton and Fluorel specialty elasto-
mers are prepared from only fluorinated monomers, Aflas incorporates propylene to the
extent of nearly 50% of the monomers polymerized, the balance being tetrafluoroethylene.
Nuclear magnetic resonance spectroscopy (rqF) indicates that the polymer is at least 70 per-
cent alternating , and that the methyl side groups are randomly arranged, resulting in an amor-
phous material. Polymerization is carried out by emulsion polymerization using an
ammonium persulfate-sodium bisulfite redox catalyst or another patented catalyst of the same
type. The reactivity ratios for the monomers, r1(C2F4) and r2(C3H6) were calculated by the
Fineman-Ross method 2 to be 0.05 and 0.10, respectively. If both r, and r2 are much smaller
than 1, this indicates low rate constants for the reactions of each monomer with itself at the
polymer chain end. A high degree of alternation in the polymer results. The alternating
character is undoubtedly responsible for the properties of the material, comparable in many
respects to those of fluoroelastomers containing only fluorinated monomers. It is interesting
to note that a copolymer of tetrafluoroethylene and ethylene is also commercially available
under the trade name Tefzel, marketed by Du Pont. It is a thermoplastic and not an elasto-
mer, which means that it is semicrystalline. The different types of Aflas and related polymers
are shown in Table 2. In this report, a comparison of the properties of Alas, Viton, and
Fluorel will be made using available product literature. Then, characterization of the Atlas
gumstock will be presented and, finally, comparison of the properties of an Aflas compound
with a Fluorel compounded elastomer, including resistance to chemical agent simulants.

COMPARISON OF PROPERTIES

Fluorocarbon elastomers have excellent properties compared to other elastomers, especially
in the areas of chemical resistance and high temperature use. Improvements in properties of
the commercially important fluoropolymers have occurred by incremental improvements in poly-
merization, work up, and cure systems are not by development of new polymers. 3 Since they
-might be compared for the same application, the properties of Atlas, Viton, and Fluorel, as
they are given by the manufacturer, are listed in Tables 3, 4, and 5.

*Asahi Glass Co., Ltd., R & D Division, 1150 Hazawa, Kanagawa-Ku, Yokohama, Japan.

tXenox, Inc., P.O. Box 79773, Houston, TX 77279.
1. KOJIMA. G., and KOJIMA, H. A New Fluoroelastomer Derived From Tetrafluoroethylene and Propylene. Rubber Chemistry and TcchnoltoV.

v. 50. 1977, p. 403.
2. FLORY, P. J. Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York, 1953, p. 183.
3. STIVERS, D. A. Fluoroelastomers in the Vanderbilt Rubber Handbook, R. 0. Babbit, ed., R. T. Vanderbilt Co., Inc., Norwalk, CT, 1978,

p. 245.
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Table 1. FLUOROELASTOMERS

Polymer Commercial United States Weight Percant
Name Supplier Fluorine Chemical Structure

F F H CH 3I I I i
Aflas XenoxJ3M* 53.5 - C - C- C - C-

S I I
F F H H

H F F F
I I I I

Fluorel 3M 71.0 C - C - C - C-

H F F CF 3

H F F F
I I I I

Viton Du Pont 71.0 C- C- C- C-
I I I I

H F F CF 3

0 CH 2CF3I
Eypel F Ethyl 54.0 P= N-I

o CH 2(CF2CF2)1-3H

CH3I
Silastic Dow Corning 36.5 - Si - 0 -

I
CH2CH2CF3

*3M Industrial Chemical Products Division, 3M Center, Bldg. 223-GS-04, St Paul, MN 55144-1000. When this work began, Xenox, Inc. was
the U.S. supplier. Currently, 3M performs that function.

Table 2. TYPES OF AFLAS
(An epoxy fluoropolymer has also been prepared; discussed in the section on compounding.)

Product Designation

Xenox/37M Comments

150 E / FA-1 50 E Lowest Molecular Weight for Wire & Cable

150 P/FA-150 P General Purpose

150 L / FA-150 L Process Aid for Chemical Tank Linings

100 P* Not Heat Treated (White Samples in This Report)

100 H / FA-100 H Highest Molecular Weight, Replaced 100 P

100 S / FA-100 S Improved Compression Set

200* Resistant to Hydraulic Fluids
Contains Double Bonds

*Not marketed by 3M, July 1987



Table 3. GENERAL PROPERTIES OF FLUOROELASTOMERS

Property Viton Fluorel Aias

Specific Gravity 1.80- 1.86* 1.80 - 1.87* 1.5 - 1.6*

Hardness (Shore A) 50-95 50-95 60-95

Tensile Strength (psi) 2000 1300- 2700 2000 -3200

Elongation (%) 150-300 100-500 55-400

Compression Set (B) 50% (1000 hr) 50% - 70% (1000 hr) 30% (70 hr)
392TF (200"C) 10% - 70% (70 hr) 10% - 30% (70 hr)ASTM D 395

Brittle Point -25F - 75°F -35°F -55OF

Maximum Temperature 450°F 400°F 400OF
Continuous Operation

Minimum Temperature -230C (-10 0F) -40°F (Seals) t
Dynamic Applications

Static Applications To Brittle Point t t

*Gumstock
tNo data

Tabla 4. THERMAL AND ELECTRICAL PROPERTIES OF FLUOROELASTOMERS

Property Viton Fluorel Alas

Specific Heat 0.395 * *

Coefficient of 88 x 10',oF * *
Linear Expansion 16 x 10" /PC

DC Resistivity 2 x 1013 2 x 1013 *

(ohm-cm)

Volume Resistivity * * 3.Ox 1i s , 700F
(ohm-cm 500 Volts DC) 1.7 x 10 3 , 392OF

Dielectric Constant 10 11.4 2.6
100 Hz, 25C 100 Hz, 250 C 60 Hz, 210 C

Dissipation Factor 0.05 0.0125 *

Dielectric Strength 500 630 580
(Volts/mil)

*No data

Table 5. CHEMICAL RESISTANCE OF FLUOROELASTOMERS

Viton Fluorel Alas

Excellent Oils Automotive Fuels Acids
Fuels Hydrocarbons Animal/Vegetable Oils
Lubricants Aircraft Fuels and Oils Bases
Most Mineral Acids Hydraulic Fluids Brake Fluids

Certain Chlorinated Hydraulic Fluids
Hydrocarbons (Phosphate Esters)
(Chloroform) Stream[Water/Brine

Good Aliphatic Aromatic Solvents Alcohol
and Aromatic Polar Solvents Amines
Hydrocarbons Aqueous Acids Oils and Lubricants

Water/Salt Solutions Oxidizing Agents
Dilute Alkali
Oxidative Environments

Poor Ketones Strong Caustic Benzene
Esters Ammonia Fuels
Amines Ketones Ketones
Strong Bases Certain Polar Solvents Chloroform
Ethers

3



The properties in Table 3 appear to be quite comparable, except that the specific gravity
is measured on compounded samples and, so, is quite variable. The specific gravity of Atlas
materials is significantly lower than that of the other two elastomers, due to the lower fluo-
rine content. This is often interpreted as resulting in a cost saving, since the polymers are
purchased by weight. One of the shortcomings of fluorocarbon elastomers is their low temper-
ature properties. A comparison of the use temperatures of elastomers is shown in Figure I.
Since fluorocarbon elastomers typically have high glass transition temperatures compared to
other elastomers, their low temperature use is limited to static applications where chemical
resistance is required. Where there is data to compare in Table 4, the major difference is in
the dielectric constant. That of Atlas is considerably lower, which is not surprising con-
sidering the insulating character of propylene. The chemical resistance of the three elasto-
mers is shown in Table 5. Viton and Fluorel seem to exhibit very similar chemical resistance.
while Atlas differs. According to the manufacturer, Atlas shows excellent resistance to acids
and bases, whereas the other polymers show poorer resistance to those substances. Another
difference seems to be in resistance to halogenated solvents, Atlas showing poor resistance to
chloroform, while Fluorel shows excellent resistance to chloroform.

200
15 - LLj N

UU
100

-20
q)

-30

-40-
Z (Da

-50 0 N

ow _

26 0 CL

Figure 1. Service temperature range for oil/fluid resistant
elastomers. [Reprinted from H. R. Penton, Kaut. &
Gummi Kunst. (1986), with permission.]

MATERIALS

Samples of uncompounded Atlas were provided by Xenox, Inc. These include heat-
treated 150 E, 150 P, 100 H, and 100 S, which are brown in color. A nonheat-treated sam-
ple, 100 P, was also included, which was white in color. Samples of poly(vinyl fluoride),
poly(vinylidene fluoride), polytetrafluoroethylene, and propylene were obtained from Chem Ser-
vices, Inc. An Atlas 150 P compound and a Fluorel compound were obtained from Smithers
Scientific Services, Inc. The formulations are shown in Tables 6 and 7.

The remaining sections of this report will discuss the experimental technique used and the
results of the experiments.
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Table 6. RECIPE FOR FLUOREL FLUOROELASTOMER

Ingredient PHR

Fluorel 2174* 80

FRuorel 2145 20

Carnauba Wax 3

N-990 Carbon Black 30

Maglite D (MgO)t 6

Calcium Hydroxide 2.5

135.5
*Incorporated cure gum
tSupplied by C. P. Hall Co. or Calgon Corporation

Table 7. RECIPE FOR AFLAS FLUOROELASTOMEP

Ingredient PHR

Alas 150 P 100

N-990 Carbon Black 50

Carnauba Wax 2

Diak #7* 7

Luperco 101XLt 9

169
*Suppled by Du Pont Co.
tSupplied by Harwick Chemical Corp. or Pennwalt Corp.

SOLUBILITY

For several types of analysis, solutions of the uncompounded elastomer are required. Mix-
tures of Freon TF and ethyl acetate were recommended by the supplier, but the best solvent
for Aflas seems to be tetrahydrofuran. Very dilute solutions of the 150 and 100 series sam-
ples were prepared, so that they might be analyzed by size exclusion chromatography (SEC),
also called gel permeation chromatography. This would provide an estimate of the molecular
weights relative to the molecular weights of polystyrene standards. Before SEC, samples are
filtered, usually through a 0.45 u or a 1.0 u filter. These solutions were not filterable, indicat-
ing that some polymer gel remained even after stirring and gentle heating for several days.
No reliable estimate of molecular weight could be obtained using SEC for such samples. Solu-
tions in deuterated tetrahydrofuran were used for nuclear magnetic resonance experiments
(NMR).

NUCLEAR MAGNETIC RESONANCE

Proton and carbon NMR spectra were run on a Varian XL-200 instrument. The 1H spec-
trum of sample 100 H is shown in Figure 2. The peaks at 3.55 ppm and 1.7 ppm are due to
the THF solvent. The peak at 1.26 ppm is due to the methyl group of propylene, and multi-
plets at 2.03, 2.50, and 2.60 are due to the methine and methylene protons, respectively.
The spectrum is consistent with the alternating copolymer structure stated by the manufac-
turer. The peaks are broadened, but are consistent with the theoretical spectrum from iso-
lated -CH 2CH(CH3)- repeat units, a doublet for the methylene group, a multiplet for the

5



methine, and a doublet for the methyl group. The integration of the spectrum does not fit
the structure and no explanation is offered for this behavior. A research paper on the tluo-
rine NMR spectra of the polymers concludes that the polymers have an alternating structure.1

The proton deco,,nIed 1 3C NMR spectrum for the same polymer is shown in Figure 3. The
multiplets at 25 ppm and 67.4 ppm are due to the THF. The singlet at 14.6 ppm is due to
the methyl carb,.,. At 31.1 ppm, are overlapping resonances due to the carbon of the
methylene and methine groups. Between 110 ppm and 130 ppm are two overlapping triplets
of triplets, due to coupling of fluorine with the carbon atoms of the tetrafluoroethyl repeat
unit. This spectrum is also consistent with the alternating structure suggested by the manufac-
turer, suggesting isolated tetrafluoroethylene and propylene units.

5 4 3 2 0
ppm

Figure 2. Proton NMR spectrum of Aflas 100 H.

U 00

UI!

~- 250 Hz

II I

ppm

Figure 3. Proton decoupled l 3c NMR spectrum of Arias 100 H.
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INFRARED SPECTROSCOPY

Infrared spectra were run on a Perkin-Elmer 1500 spectrophotometer equipped with a
Wilks Scientific model 37 heating cell. The sample compartment was kept in flowing nitro-
gen. Aflas 100 P was dissolved in tetrahydrofuran and cast as a thin film on a KBr salt
plate. The spectrum is shown in Figure 4. The spectrum contains peaks in the region of
2840 to 3000 cm l due to methylene and methyl group stretching, weak doublets in the region
1350 to 1475 cm 1 due to other motions of the methylene, and methyl groups and several
strong Veaks in the region 1000 to 1300 cm 1 due to C-F stretching in the CF2 and CF 3
groups. The sample was also heated to 350'F for thirty minutes in order to observe double
bond formation, if any. This Alas sample was white and not heat treated, whereas the other
samples were heat treated and dark brown in color. Presumeably, the heat treatment was
used with the hope of introducing double bonds into the polymer. The double bonds could
be used in a vulcanization process which would be much more efficient than the peroxide
vulcanization available for use in polymers which contain no double bonds. Double bond for-
mation was undetected in the heated sample. This explains why Aflas 200 has been devel-
oped which contains a small amount of an unsaturated third monomer for crosslinking. 7

(See Table 2.) This material is apparently not available from 3M.

.- . .

I. I

4000 3000 2000 1600 1200 1000 600
Frequency 1cm-l)

Figure 4. Infrared spectrum of Aflas 100 P. Sample cast from tetrahydrofuran
solution onto a KBr salt plate and dried.

4. DYER. J. R. Applications ofAbsorption Spectroscopy of Organic Compounds. Prentice-Hall. Englewood Cliffs, NJ. 1905, p. .3(.
5. KODAMA. S., WACHI, H.. [TO. Y.. MOROZUMI. M.. and KOJIMA. G. Unique Fluoroelastoners for Diverse Industrial Uses with lI,,'

Environmentr. International Rubber Conference 1985 Program. Kyoto, October 15-18. p. 820.
', KOJIMA. G.. and WACI If, 11. A New retrafluoroethvlene-Piropvlen Based f"luoroelastomer with Improved Low Termperanir," tI'pru,'ccs

International Rubber Conference 1985 Program, Kyoto. Octobr 15-18, p. 242.
7. HULL, D. E.. KOJIMA, G.. and WACIHI, H. New Types of Fluoroelastomers Provide Inproved Resistance to Some .|tomotive .cdi,.

133rd American Chemical Society Rubber Division Meeting, Dallas, April 1988, paper no. 17.
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NEUTRON ACTIVATION ANALYSIS

The percent fluorine in the Atlas polymers was measured using neutron activation analy-
sis. A 14.7 MeV neutron generator from Kaman Sciences was used, together with an
ORTEC ADCAM multichannel analyzer and an intrinsic germanium detector. Polytetrafluoro-
ethylene pellets were used as a standard. The results are shown in Table 8. For a strictly
alternating copolymer with a repeat unit of -CF 2CF 2CH(CH 3)CH 2- the weight percent fluorine
is 53.5%. All of the samples contain more fluorine than the theoretical, indicating that more
tetrafluoroethylene monomer is incorporated. Evidence for this has also been obtained from
fluorine NMR.' The lower molecular weight samples 150 E and 150 P incorporate more fluo-
rine, indicating less alternating structure for those materials. These were the earliest materi-
als marketed. This data suggests that the manufacturer was able to improve the polymer-
ization process, perhaps by choice of a catalyst which would increase the alternation of the
monomers in the polymer chain. Also note that if adjacent propylene moieties occurred
rather than adjacent tetrafluoroethylene units, much poorer properties would result.

Table 8. NEUTRON ACTIVATION ANALYSIS RESULTS

Aflas Sample % Fluorine

150 E 62.7

150 P 64.7

100 H 57.0

100 P 61.3

100S 57.3

Theoretical Value 53.5

THERMOGRAVIMETRIC ANALYSIS

Thermogravimetric analyses (TGA) were performed with a Perkin-Elmer TGS-2 Thermo-
gravimetric System. Dynamic scans were conducted at a rate of 10°C/min. Isothermal analy-
ses were conducted by heating at 40°C/min to 350'C and holding for the balance of the
stated time. The atmosphere was flowing dry air at a rate of 50 ml/min. Data was acquired
using a Bascom-Turner M/8110 Intelligent Recorder, stored on disk and then plotted.

Figure 5 shows dynamic TGA curves for the tetrafluoroethylene-propylene copolymer and
polytetrafluoroethylene. Significant weight loss begins at approximately 4250C for the copoly-
mer and at 525°C for the homopolymer. The results show one reason why Alas can be used
in continuous service at 400'C. The weight loss is one measure of polymer degradation.
Isothermal aging results are shown in Figure 6. The copolymer is compared to similar poly-
mers containing more hydrocarbon character. It is interesting that the Atlas is more stable
than the other materials, even though it can form a stable tertiary free radical during degrada-
tion. This is not possible for the other fluoropolymers, poly(vinylidene fluoride) and
poly(vinyl fluoride), but is possible for the comparatively unstable polypropylene. Note that
Aflas does lose a small amount of weight, which will be discussed in the next section.

8



100

polytetrafl uoroethylene
Atlas
100 P

0
25 225 425 625 825 1025

Temperature (0C)

Figure 5. Dynamic thermogravimetiic analysis curves in air.
Scan rate is 100/min.

100

Z50 polylvinyl fluoride)
._

polypropylene

0 j

0 0.5 1
Time (hr)

Figure 6. Thermogravimetric analysis isothermal aging
curves at 351?C in air.

PYROLYSIS-GAS CHROMATOGRAPHY-MASS SPECTROSCOPY

Pyrolysis-gas chromatography-mass spectroscopy was also used to study the thermal treat-
ment of the 100 P sample. The sample was analyzed using a Hewlett-Packard 5996 GC/MS.
A 5.0 mg sample was placed in a quartz tube holder and inserted into a platinum coin desorp-
tion probe. The probe was inserted into a pyrolysis-GC interface maintained at 260'C. The
controller was manufactured by Chemical Data Systems, model number 122. The injection
port of the GC was set , 780 0C and the GC oven was set at -20 0 C. A 12 m, fused silica

9



capillary column of crosslinked dimethylsilicone stationary phase was used. Helium was used
as the GC mobile phase. The desorption probe was ramped at 20°C/msec to 350'C and held
at that temperature for 20 sec. The GC oven was ramped at 10°C/min to 300'C and held
for 10 min. The quadropole mass spectrometer, operating in the electron impact mode at 70
eV, was scanned from 10 to 800 amu at a rate of 1 sec/scan. Data acquisition, storage, and
reduction was performed using a Hewlett-Packard 1000 E-series computer, running RTE-6/VM
software.

Only hydrocarbons were observed in the mass spectrometer, mostly fragments of twelve
and fourteen carbons. This suggests that the propylene oligomerizes under the polymerization
conditions, and that the heat treatment is, in fact, useful in removing the low molecular
weight materials. They would have a negative effect on the final properties of the com-
pounded elastomer.

COMPOUNDING

It should be noted that Aflas, Viton, and Fluorel are actually gummy polymers in the
pure state, and that they become elastomeric only on compounding, which is a crosslinking
process. Most forms of Aflas contain no double bonds and can, therefore, only be cured by
electron beams or by peroxides. 8 In the cure recipe shown in Table 7, Luperco 101XL is a
peroxide curing agent and Diak #7 is triallyl isocyanurate (TAIC), a coagent. The Diak #7
contains three double bonds per molecule and so promotes crosslinking once free radicals are
formed.

9

Peroxide - 2 R°

R' + CH - RH + =C"

_ + Q -

Q = Triallyl Isocyanurate

A high vinyl 1,2-polybutadiene like Ricon 153 (Colorado Chemical Specialties) can be
used in addition to TAIC.' 0 It accelerates the cure and improves the extrusion resistance of
molded parts.

In order to solve the problems created by the lack of double bonds or other sufficiently
reactive sites in Aflas, the manufacturer has investigated the possibility of incorporating epoxy
groups as cure sites in Aflas-like materials. The results have been published. This polymer
could be cured with blocked hexamethylene diamine using acid salts of the diamine, and
showed mechanical properties and chemical resistance similar to the TFE/P polymer cured by
peroxides 11

The remainder of this report will discuss results obtained using the compounded elastomer.

8. KOJIMA, G., and WACHI, H. Vulcanization of a Fluoroelastorner Derived from Tetrafluoroetivlene and Propvlne. Rubber Chemistry and
Technology. v. 51. 1978. p. 940.

9. CORAN. A. Y. Vulcanizatio,. Ch. 7 in Science and Technology of Rubber, F. R. Einch, ed., Academic Press, NY. 1978. p. 327-32S.
10. 3M Industrial Chemical Products Division, Product Literature on Atlas, 1987.
11. KO.1IMA, G., KOJIMA. H., MOROZUMI, M., WACI.I H., and HISASUE, M. Vulcanization and Vulcanizate Propcrtics of'a

Fluoroelastorner Containing Epoxy Groups as Cure Sites. Rubber Chemistry and Technology, v. 54. 1981. p. 779.
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DIFFERENTIAL SCANNING CALORIMETRY

Dynamic differential scanning calorimetry (DSC) was performed on a Perkin-Elmer DSC-2
instrument in the range of 150'K to 300'K. The base temperature was maintained with liq-
uid nitrogen, and the instrument was purged with helium. Samples weighing 10 mg to 15 mg
were encapsulated in standard aluminum pans and heated at a rate of 20 0/min. The resulting
curves were analyzed using a Perkin-Elmer Thermal Analysis Data Station. The results are
shown in Table 9.

The Aflas copolymers exhibit Tgs near 00C, which is improved by compounding to -7°C,
whereas the Fluorel elastomers have Ts near -25°C. The low temperature use is perhaps
extended 20'C.

Table 9. THERMAL PROPERTIES AND HARDNESS OF AFLAS

Sample DSC Tg CC) TMA Transitions (C) Hardness (Shore A)
Alas

150E 0 -

150P 1 4,48

100H 2 -

100P 2 - -

Compounded* -7 4 83

Fluorel
2145 -24 -11,31 -

2174 -24 -20,37 -

Compounded* -21 -14 78
*Compounded samples are 0.040" thick

HARDNESS

The Shore A hardness determined using ASTM D 2240-75 (shown in Table 9) is represen-.
tative, but can vary considerably depending on compounding ingredients.

THERMOMECHANICAL ANALYSIS

Thermomechanical analsis (TMA) was performed on a Perkin-Elmer thermomechanical
analyzer, TMS-1 with a Perkin-Elmer model UU-1 temperature program controller. Results
were recorded on a Soltec chart recorder, model 1242. The samples were 1.0-mm thick. The
weight used on the TMA probe was 20 g. The heating rate was 20°C/min and the chart
speed was 20 mm/min. Samples were heated in a helium atmosphere from -100"C to the sot-
ening point of the samples. The results are shown in Table 9.

The values of the TMA transitions are consistent with the results of DSC, and include
final softening temperatures for some of the uncompounded polymers 100 to 300 above room
temperature. The compounded elastomers did not show final softening in the region scanned
up to about 270'C.

11



TENSILE PROPERTIES

Standard samples were prepared and tested using ASTM methods for tensile properties
D1708-66 using a microdie. Stress-strain curves for the compounded elastomers are shown in
Figures 7, 8, and 9, each one for two samples of the same thickness. The stress-strain proper-
ties depend, to some extent, upon the compounding. For the 10 and 20 mil samples, the
Aflas compound is the stiffer, stronger material, but the 40 mil samples exhibit the opposite.
The properties of the Aflas are so poor, that a mishap during the compounding operation is
suspected.

20.00

17.50

15.00

', 12.50

0.0 U
.,,

5.00

2.50 C = Aflas
A = FRuorel

0 50 l0 150 200 250 300 350 400

Elongation (%)

Figure 7. Stress-strain curves for 0.010" samples.

20.00

17.50

15.00

12.50

5.00

2.50 - 0= Alas
c = Fluorel

0 50 100 150 200 250 300 350 400

Elongation (%l

Figure 8. Stress-strain curves for 0.020" samples.
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Elongation (%)

Figure 9. Stress-strain curves for 0.040 samples.

DYNAMIC MECHANICAL ANALYSIS

Dynamic -mechanical analysis was performed on a Rheometrics dynamic spectrometer, RDS-
7700. The samples were cut to 13 mm by 64 mm and were 1.0-mm thick. Measurements
were taken at 10°C increments, with an equilibration time of 2 min at each temperature.
The temperature range studied was from -50'C to 200'C with a strain setting of 1.0 for
Aflas, 1.2 percent for Fluorel, and a rate of 6.28 radians per second.

The dynamic mechanical spectra are shown in Figures 10 and 11. The polymers exhibit
remarkably similar behavior in the region where they can be compared. The peaks in the tan
delta curves occur at different temperatures, but are similar in magnitude. Comparing the
stiffness at -50'C, the storage moduli, G', are 1.6 x 1010 and 1.7 x 1010 dynes/cm 2, respec-
tivel,, for Atlas and Fluorel compounds, respectively. At 1000 C, values of 7.6 x 107 and 6.4
x 10 were obtained. This suggests that the materials would behave similarly at the tempera-
tures mentioned.
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Figure 10. Dynamic mechanical spectrum for Aflas.
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IMMERSION TESTING

Immersion testing is the method used to screen many types of polymers for chemical resis-
tance. A 1-inch disk, in the present case, 40-mils thick, of the compounded elastomers are
immersed in a liquid of inte-rest at approximately 22'C. The samples are removed from the
jar, blotted dry, and weighed at regular intervals, more often at the beginning of the experi-
ment and less often as the experiment progresses. When the weight of the sample plus
sorbed liquid reaches a constant value, the experiment is ended.

The results of this experiment are shown in Table 10. The Atlas performed better in
diisopropyl methyl phosphate (DIMP), absorbing much less in a longer period of time. If
one considers total weight absorbed, it also performs better in dichloropentane (DCP), but
only slightly. Weight gains of 6 to 14 percent are quite small in tests of this kind on elasto-
mers. The results of this test are a little surprising when one views the data in Table 5.
Atlas performs poorly in chloroform, but Fluorel has excellent resistance to chloroform. Not
included in Table 5 are the chemical resistance data for other chlorinated hydrocarbons, which
show mixed results according to the suppliers. Atlas has poor chemical resistance to carbon
tetrachloride and trichloroethylene, good resistance to methylene chloride, and excellent resis-
tance to dichlorobutane, the most similar compound tested to DCP. Fluorel has poor resis-
tance to methylene chloride, excellent resistance to carbon tetrachloride and trichloroethylene,
however, dichlorobutane was not tested. Ethylene dichloride is the most like DCP of the
halogenated solvents tested and shows excellent resistance. The interactions of the chlori-
nated solvents and the fluorinated polymers are complex and difficult to predict.

Table 10. IMMERSION RESULTS ON COMPOUNDED ELASTOMERS

Maximum Weight Gain (%) When Immersed in

Smithers Rubber Compound DCP* DIMPt

Atlas 6.3 (145 hr) 23 (78 hr)

Fluorel 14 (3200 hr) 199 (48 hrl

*DCP is 1,5-dichloropentane
DIMP is diisopropyl methyl phosphonate

From the results discussed in the preceeding paragraph, one would choose Atlas for use
in an environment where chemical agents might be present, since the resistance of Atlas to
both simulants was very good. Caution is always advised in using results of tests with simu-
lants, because the only way to guarantee resistance to live agents is to test the polymeric
materials with the live agents.

The NBC Materials Handbook 12 summarizes testing of polymeric materials with chemical
agent decontaminants. Both Atlas and Viton compounds were tested and showed excellent
resistance to decontaminating solutions. Very small volume changes occurred on immersion
for 24 hours, and both elastomers retained their strength.

12. NBC Materials Handbook. Hughes Aircraft Co., Missile Systems Group, Canoga Park, CA, 1982, p. 3-16, 3-25.
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APPLICATIONS

The earliest uses for fluoroelastomers was in O-rings. Solid and cellular products can be
made by molding, extruding, or calendaring. Solutions can be used and coated fabrics can be
prepared. There are automotive applications in hydraulic seals, automatic transmission seals,
and carburetor needle value tips. In aircraft, fluoroelastomers are used in seals where ther-
mal cycling is required, and for exceptional lubricant and fuel resistance. Other uses include
wire and cable coatings and in chemical process equipment for seals, gaskets, and transfer
hoses.

CONCLUSIONS

Fluorocarbon elastomers are used in many applications where their chemical resistance at
elevated temperatures is important. It is clear from the data presented here that in many
ways (e.g., mechanical properties), Atlas is comparable to the older Viton and Fluorel prod-
ucts. There are also applications where the unique properties of Atlas make it the polymeric
material of choice for uses where its chemical resistance behavior is better than that of the
more traditional materials. Need for a material with a low dielectric constant might lead to a
choice of Aflas materials over the Viton or Fluorel materials.
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